(28) R. Schmidt, H.-C. Steinmetzer, H.-D. Brauer, and H. Kelm, J. Am. Chem. Soc., 98, 8181 (1976).
(29) R. C. Neuman, Jr., and E. W. Ertley, J. Am. Chem. Soc., 97, 3130 (1975).

Henrik Olsen, James P. Snyder*
Department of General and Organic Chemistry H. C. Фrsted Institute, University of Copenhagen
DK 2100 Copenhagen \emptyset, Denmark
Received September 22, 1976

Regiospecific Reaction of Enol Ethers with an Organopalladium Salt. Stereochemical and Conformational Effects on Product Formation

Sir:
In connection with our interest in synthetic routes to C nucleosides, ${ }^{1-4}$ we have studied reactions of three cyclic enol ethers, 3,4-dihydro-2 H -pyran (1), 3,4-di- O -acetyl-D-arabinal ${ }^{5}$ (2), and 3,4,6-tri- O-acetyl-D-glucal ${ }^{6}$ (3) with an organopalladium reagent generated in situ by treatment of 1,3 -di-methyl-2,4-pyrimidinedion-5-ylmercuric acetate ${ }^{7,8}$ (4) with palladium salts. ${ }^{9,10}$ Each of the reactions exhibited complete

regiospecificity with carbon-carbon bond formation solely between C-5 of the pyrimidine and C-I of the cyclic enol ether. ${ }^{9}$ Otherwise, the three reactions exhibited significant differences. Three distinct modes of decomposition of the intermediate enol ether-organopalladium salt adducts were observed. The various reaction pathways giving rise to the products isolated are a consequence of the respective stereochemical requirements of the addition and elimination reactions involved.

The preparation ${ }^{7}$ of 1,3-dimethyl-2,4-pyrimidinedion-5ylmercuric acetate (4) was accomplished by addition of a stoicheometric amount of mercuric acetate to 1,3-dimethyl-2,4-pyrimidinedione ${ }^{11}$ in methanol containing perchloric acid. When 4 (1 equiv), palladium acetate (1 equiv), lithium chloride (2 equiv), and 3,4-dihydro- 2 H -pyran ($1,1.5$ equiv) in acetonitrile were stirred at $25^{\circ} \mathrm{C}$ for 12 h , a precipitate of finely divided palladium was formed. Treatment of the reaction mixture with hydrogen sulfide to remove mercuric and residual palladium(1I) ions followed by chromatography of the residue (after removal of solvent) on silica gel using dichloromethane yielded 1,3-dimethyl-5-($2^{\prime}, 3^{\prime}$-dihydro-6' H-pyran- 2^{\prime}-yl)-

Scheme I. Stereochemistries of Organopalladium Salt Addition and Elimination Reactions

2,4-pyrimidinedione (6): $24 \% ; \mathrm{mp} 134-135^{\circ} \mathrm{C}$; $\lambda_{\text {max }}{ }^{\mathrm{MeOH}} 270$ nm; ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right)$ 1.8-2.8 (m, $\left.3^{\prime}-\mathrm{CH}_{2}\right), 3.38,3.43$ (NMes), 4.35 ($\mathrm{m}, 6^{\prime}-\mathrm{CH}_{2}$), 4.59 (d of d, $J=10,3.5 \mathrm{~Hz}, 2^{\prime}$ CH), $5.6-6.1$ (m, $4^{\prime}-, 5^{\prime}-\mathrm{CHs}$), $7.29(\mathrm{~s}, 6-\mathrm{CH})$; mass spectrum, $m / e 222\left(\mathrm{M}^{+} \cdot\right)$. Further elution produced 1,3-dimethyl-5($5^{\prime}, 6^{\prime}$-dihydro- $2^{\prime} H$-pyran-2'-yl)-2,4-pyrimidinedione (5): 66\%; mp 123-124 ${ }^{\circ} \mathrm{C} ; \lambda_{\max }{ }^{\mathrm{MeOH}} 270 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right)$ 1.8-2.5 (m, $5^{\prime}-\mathrm{CH}_{2}$), 3.37, 3.41 (NMes), 3.6-4.2 ($6^{\prime}-\mathrm{CH}_{2}$), $5.25\left(\mathrm{br}, 2^{\prime}-\mathrm{CH}\right), 5.65-6.10\left(\mathrm{~m}, 3^{\prime}-4^{\prime}-\mathrm{Hs}\right), 7.27(6-\mathrm{CH})$; mass spectrum $m / e 222\left(\mathrm{M}^{+}.\right)$.

In similar experiments, ${ }^{12}$ reactions of the unsaturated pyrano sugar derivatives $\mathbf{2}$ and $\mathbf{3}$ with $\mathbf{4}$ in the presence of palladium salts yielded products in which $\mathrm{C}-5$ of the pyrimidine ring is bonded to a cyclic dihydropyranyl moiety (7^{13} and $9,{ }^{13}$ respectively) or to an open-chain carbohydrate derivative (8 and 10, respectively). Thus, from reaction of 2 and 4 in the presence of $\mathrm{Li}_{2} \mathrm{Pd}(\mathrm{OAc})_{2} \mathrm{Cl}_{2}$ was obtained 1,3 -dimethyl- 5 -(5^{\prime}-ace-toxy- $5^{\prime}, 6^{\prime}$-dihydro- $2^{\prime} \mathrm{H}$-pyran- 2^{\prime}-yl)-2,4-pyrimidinedione (7:13 $\lambda_{\text {max }}{ }^{\mathrm{MeOH}} 282,235 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right), 2.11$ (OAc), 3.37, 3.43 (NMes), 3.66 (d of d, $J=12,8 \mathrm{~Hz}, 6^{\prime}-\mathrm{CH}$), 4.17 (d of $\mathrm{d}, J=12,6 \mathrm{~Hz}, 6^{\prime}-\mathrm{CH}$), $5.30\left(\mathrm{br}, 2^{\prime}-, 5^{\prime}-\mathrm{CHs}\right), 6.02(\mathrm{~m}$, $3^{\prime}-4^{\prime}$-CHs), 7.25 ($6-\mathrm{CH}$); mass spectrum $m / e 210$ (M HOAc)) in 20% yield and 2,3-diacetoxy-5-($1^{\prime}, 3^{\prime}$-dimethyl$2^{\prime}, 4^{\prime}$-pyrimidinedion- 5^{\prime}-yl)pent-4-en-1-ol (8: mp $146-147^{\circ} \mathrm{C}$; $\lambda_{\max }{ }^{\mathrm{MeOH}} 270 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\lambda\left(\mathrm{CDCl}_{3}\right), 2.08,2.11$ (OAcs), 3.36, 3.50 (NMes), 3.81 (d, $J=5 \mathrm{~Hz}, 1-\mathrm{CH}$), 5.01 (d of t, J $=5,4 \mathrm{~Hz}, 2-\mathrm{CH}), 5.6 \mathrm{l}\left(\mathrm{d}\right.$ of $\left.\mathrm{d}, J=12,{ }^{14} 10 \mathrm{~Hz}, 4-\mathrm{CH}\right), 5.95$ (d of d, $J=10,4 \mathrm{~Hz}, 3-\mathrm{CH}), 6.50\left(\mathrm{~d}, J=12^{14} \mathrm{~Hz}, 5-\mathrm{CH}\right.$), 7.84 (s, $6^{\prime}-\mathrm{CH}$); mass spectrum $m / e 340\left(\mathrm{M}^{+}.\right)$) in 32% yield. From 3,4,6-tri-O-acetyl-D-glucal (3) and 4 were obtained the corresponding dihydropyranyl product 9^{13} in $\sim 20 \%$ yield ${ }^{15}$ and the acyclic carbohydrate product 6 -($1^{\prime}, 3^{\prime}$-dimethyl- $2^{\prime}, 4^{\prime}$ -pyrimidinedion- 5^{\prime}-yl)-1,3,4-triacetoxyhex-5-en-2-ol (10: $\lambda_{\text {max }}{ }^{\mathrm{MeOH}} 282,236 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right) 2.05,2.08,2.10$ (OAcs), 3.35, 3.44 (NMes), 3.96 (m, 2-CH), 4.11 (d, $J=5$ $\left.\mathrm{Hz}, \mathrm{l}-\mathrm{CH}_{2}\right), 5.14(\mathrm{~d}$ of d, $J=6,5 \mathrm{~Hz}, 3-\mathrm{CH}), 5.59(\mathrm{~d}$ of d, J $\left.=12.12,{ }^{14} 10 \mathrm{~Hz}, 5-\mathrm{CH}\right), 5.94(\mathrm{~d}$ of d, $J=10,5 \mathrm{~Hz}, 4-\mathrm{CH})$, $6.38\left(\mathrm{~d}, J=12 \mathrm{~Hz},{ }^{14} 6-\mathrm{CH}\right), 7.66\left(6^{\prime}-\mathrm{CH}\right)$; mass spectrum m / e $412\left(\mathrm{M}^{+}.\right)$) in 73% yield.

The general reaction of aryl (alkyl) palladium species with olefins is syn addition of the palladium derivative to the double bond followed by syn elimination of a hydridopalladium salt. ${ }^{10,16-18}$ The major product (5) resulting from reaction of 3,4-dihydro-2H-pyran (1) with the organopalladium reagent derived from 4 is that expected for this process. The minor product (6) arises by isomerization of 55^{10} It is noteworthy that the addition reaction is regiospecific owing to the strong polarization of the enol ether double bond; this electronic effect is largely lacking in reactions of aryl palladium salts with
simple olefins where steric effects appear to determine the mode of addition. ${ }^{10}$

The reactions involving the sugar derivatives $\mathbf{2}$ and $\mathbf{3}$ are significantly more complex. Consideration of the results obtained and examination of molecular models indicate that approach of the organopalladium salt for complexation ${ }^{10} \mathrm{oc}$ curs primarily from the face of the cyclic enol ether ring opposite the allylic acetate substituent. ${ }^{19}$ Decomposition of the resulting cis adduct with olefin formation depends on the conformation(s) that this adduct assumes. In Scheme I it is seen that addition of the organopalladium species to 3 produces an adduct which, in its most stable conformation (A), possesses an equatorial palladium function, i.e., a geometry improper for anti elimination of palladium acetate. ${ }^{10,20,21}$ The less favorable conformation B, obtained by chair-chair interconversion, possesses the proper geometry for this elimination and presumably gives rise to the minor reaction product 9 . The palladium substituent in conformation A is, however, positioned with respect to the ring oxygen so as to permit anti elimination with alkoxide expulsion,, ,22-25 ring cleavage, and formation of a Z-olefinic ${ }^{14}$ bond, i.e., the major product (10) of the reaction. For the reaction involving 2, the energy difference between the two conformational isomers corresponding to A and B is less; as a result less selectivity is observed in the adduct decomposition.

Acknowledgment. We thank the American Cancer Society for financial support of this study.

References and Notes

(1) G. D. Daves, Jr., and C. C. Cheng, Prog. Med. Chem., 13, 303 (1976).
(2) T. D. Lee, M. V. Pickering, and G. D. Daves, Jr., J. Org. Chem., 39, 1106 (1974).
(3) E. J. Eustace, M. V. Pickering, T. E. Stone, and G. D. Daves, J.., J. Hetercycl. Chem., 11, 1113 (1974).
(4) See also S. Hanessian and A. G. Pernet, Adv, Carbohydr. Chem. Biochem., 33, 111 (1976).
(5) F. L. Humoller in 'Methods in Carbohydrate Chemistry', Vol. I, R. L. Whistler, and M. L. Wolfram, Ed., Academic Press, New York, N.Y., 1962, p 83 .
(6) W. Roth and W. Pigman in "Methods in Carbohydrate Chemistry", Vol. II, Academic Press, New York, N.Y., 1963, p 405.
(7) R. D. Youssefyeh and L. Lichtenberg, J. Chem. Soc., Perkin Trans. 1, 2649 (1974); R. M. K. Dale, E. Martin, D. C. Livingston, and D. C. Ward, Biochemistry, 14, 2447 (1975).
(8) D. E. Bergstrom and J. L. Ruth, J. Am. Chem. Soc., 98, 1587 (1976), reported the only prior preparation and reactions of a 5 -pyrimidinyl-palladium salt.
(9) To our knowledge, only a single reaction of an aryl palladium salt with an enol ether has been reported: R. F. Heck, J. Am. Chem. Soc., 90, 5535 (1968).
(10) For general reviews of organopalladium chemistry, see (a) B. M. Trost, Tetrahedron, in press; (b) P. M. Henry, Adv. Organomet. Chem., 13, 363 (1975); (c) R. F. Heck, 'Organotransition Metal Chemistry', Academic Press, New York, N.Y., 1974 ; (d) P. M. Maitlis, "The Organic Chemistry of Palladium'', Vols. I and II, Academic Press, New York, N.Y., 1971.
(11) K. Yamauchi and M. Kinoshita, J. Chem. Soc., Chem. Commun., 391 (1973).
(12) In reactions of 4 with 2 and 3, no precipitation of palladium occurred.
(13) The stereochemistry shown at $\mathrm{C}-2^{\prime}$ (the anomeric carbon) is that predicted by mechanistic considerations (see Scheme I) and has not been rigorously established.
(14) Cis-olefinic hydrogens: G. Rodemeyer and A. Kemer, Chem. Ber., 109, 1708 (1976).
(15) This compound was not isolated in pure form; although appearing homogeneous by thin layer chromatography and exhibiting a consistent mass spectrum, the ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of a mixture of isomers resulting from allylic rearrangements of acetate and/or hydrogen.
(16) R. F. Heck, J. Am. Chem. Soc., 91, 6707 (1969).
(17) P. M. Henry and G. A. Ward, J. Am. Chem. Soc., 94, 673 (1972).
(18) K. Kaneda, T. Uchiyama, H. Kobayashi, F. Fujiwara, T. Imanaka, and S. Teranishi, Tetrahedron lett., 2005 (1977).
(19) A π-allylpalladium intermediate (see B. M. Trost and T. R. Verhoeven, J. Org. Chem., 41, 3215 (1976); B. M. Trost and J. P. Genet, J. Am. Chem. Soc., 98, 8516 (1976), and cited papers) in reactions involving acetate expulsion (i.e., formation of 7 and 9) has not been ruled out; however, the regiospecificity of the reactions observed and the formation of ring-opened products 8 and 10 lead us to prefer a single, σ-bonded intermediate.
(20) P. M. Henry and G. A. Ward, J. Am. Chem. Soc., 93, 1494 (1971).
(21) S. Wolfe and P. G. C. Campbell, J. Am. Chem. Soc., 93, 1497 (1971).
(22) M. Gouedard, F. Gaudemer, and A. Gaudemer, Bull. Soc. Chim. Fr., 577 (1973).
(23) J. E. McKeon, P. Fitton, and A. A. Griswold, Tetrahedron, 28, 227 (1972).
(24) J. E. McKeon and P. Fitton, Tetrahedron, 28, 233 (1972).
(25) T. Majima and H. Kurosawa, J. Chem. Soc., Chem. Commun., 610 (1977).

Isamu Arai, G. Doyle Daves, Jr.*
Department of Chemistry and Biochemical Sciences Oregon Graduate Center, Beaverton, Oregon 97005

Received September 9, 1977

Direct Two-Step Conversion of Penicillins to 3-Acetoxymethylcephems

Sir:
Recently, we reported the transformation of penicillins to 3 'substituted cephems through the intermediate 3 -exomethylenecepham 2.1,2 Thus, the conversion of 2 to 3 and the subsequent displacement of halogen with the acetate ion afforded $\mathbf{4 a} .{ }^{2}$ Such a transformation required initial activation of 2 with base to give the allylic anion which was then trapped with halogen to give $3 .{ }^{2}$ Subsequent transformation converted 4a to the important intermediate 7 -aminocephalosporanic acid (7-ACA, 5). ${ }^{2}$ We have since theorized that, if one could transform the 3-exo-methylenecepham 2 to an intermediate which could be intercepted directly by acetate, then the need for the initial conversion to 3 would be obviated.

a: $R=-\mathrm{OCH}_{2}{ }^{\circ} \mathrm{C}$
D: $R=\mathrm{S}_{\mathrm{S}}$

$$
R=\sqrt[3]{0}-0^{3} \mathrm{OH}_{2} \mathrm{C}-
$$

4

5

$$
\begin{aligned}
& \text { a: } R_{1}=\bigcirc-O_{0}{ }^{\circ} \mathrm{OCH}_{2}-R_{2}=-\mathrm{OCOCH}_{3} ; R_{3}=\mathrm{PNB} \\
& \text { b: } R_{1}=\square_{S} C_{\mathrm{CH}_{2}} \text { 只; } \mathrm{R}_{2}=-\mathrm{OCOCH}_{3} ; R_{3}=\mathrm{PNB} \\
& \text { c: } \mathrm{R}_{1}=\sqrt{1} \mathrm{CH}_{2} \mathrm{C}-\mathrm{R}_{2}=-0 \mathrm{COCH}_{3} ; \mathrm{R}_{1}=11
\end{aligned}
$$

One possibility which we considered was that 3-exo-methylenecepham sulfoxide 1 might be a precursor to the desired activated intermediate 6 which could be trapped at the 3^{\prime} carbon by acetate ($1 \rightarrow 6 \rightarrow 7$).

When we treated compound 1a with mixtures of acetic anhydride and acetic acid at reflux ($126^{\circ} \mathrm{C}$), we obtained a mixture of $\Delta^{2}, \Delta^{3}-3^{\prime}$-OAc cephems 7a and 4a, respectively (R $=$ phenoxyacetyl): IR $\left(\mathrm{CHCl}_{3}\right) 1785 \mathrm{~cm}^{-1}$; NMR ($3: 1 \mathrm{mix}$ ture of Δ^{2} and $\left.\Delta^{3}\right)\left(\mathrm{CDCl}_{3}\right) \delta 6.5\left(\mathrm{br} \mathrm{s}, 0.75, \Delta^{2}-\mathrm{C}_{2} \mathrm{H}\right), 5.8(\mathrm{dd}$, $1, \mathrm{C}_{7} \mathrm{H}$), 4.6 ($\mathrm{s}, 2, \mathrm{C}_{7}$ side-chain methylene), 3.6 (br s, $0.5, \Delta^{3}$ C_{2}), 2.1-2.2 (ss, 3, Δ^{2} - and $\Delta^{3}-3^{\prime}$-acetoxy).

This reaction presumably proceeds through a Pummerertype intermediate 6 which is then trapped in a 1,4 manner by

